

StarRocks vs. ClickHouse, Apache
Druid®, and Trino
Benchmark and Comparison Guide

October 2022

2

W H I T E P A P E R

Introduction
Over the last decade, business operations from marketing to product development have become

increasingly dependent on the vast stores of data harvested by the enterprise. In fact, it should come as no

surprise to anyone that to succeed in the market today, organizations must be more efficient than their

competitors when it comes to transforming these huge data volumes into critical business insights.

Delivering that analytics efficiency has been a tall order, however, even for the best engineering teams.

Contributing to this challenge is the fact that there is no such thing as the perfect data model. Every type of

data has its own model that it works best under, and this reality has forced data engineers to make

compromises in query performance, real-time capabilities, maintenance effort, and more just to keep data

moving throughout the enterprise.

Modern business analytics demands an OLAP database system capable of delivering excellent performance

in both wide-table and multi-table scenarios while also reducing the workloads of data engineers and

enabling users to query any dimension of data in real time. This guide will explore the leading available

solutions and put them to the test against each other so that enterprises looking to improve their analytics

performance can make the right choice based on their needs.

Evaluating the Leading OLAP Database Solutions
Enterprises have no shortage of options when it comes to database solutions. Choice does become limited,

however, for businesses working with extreme data volumes, high concurrency, and real-time performance

requirements. For analytics teams operating under these constraints, four solutions stand out in their ability to

adequately address most, if not all, of the aforementioned criteria. Those solutions are:

StarRocks

A relative newcomer when compared to the other legacy solutions evaluated in this report, StarRocks has

quickly become the favored solution by hundreds of enterprises worldwide. While hailed for its ultra-high

performance, StarRocks is unique in its ability to eliminate the need for de-normalized tables and reduce

engineering overhead in the form of instant updates and deletes as well as easy integrations with popular

business intelligence tools.

Apache Druid®

One of the world’s most recognized open-source projects. Apache Druid® boasts instant data visibility, ad-

hoc analysis support, and high concurrency particularly when it comes to powering UIs where an interactive

user experience is needed.

3

W H I T E P A P E R

ClickHouse

Another popular solution, ClickHouse adoption has grown substantially in recent years for delivering

database performance that put it in a class of its own. While the competition has caught up in many cases

by now, ClickHouse is still the leading choice for many enterprises that are looking for an open solution that

can support data-intensive analytics alongside their column-oriented databases.

Trino

Previously known as PrestoSQL, Trino delivers ultra-high query performance for big data analytics across a

wide variety of scenarios. Offering query federation, in-place analysis, and the ability to run Trino on-premises

or on the cloud, Trino stands out amongst its peers for its versatility.

Query Latency Performance: Wide-Table and Multi-Table
While all the solutions listed above succeed in delivering exceptional performance, it’s vital to understand just

how they fare under a variety of scenarios. After all, no two enterprises operate the exact same way so it’s

important to select for a solution that can perform in your specific environment.

To address this concern, the following benchmark results will rely on standard datasets and compare the

wide-table and multi-table query performance of StarRocks, Apache Druid®, ClickHouse, and Trino. Before

examining the benchmark results, here’s an overview of the wide-table and multi-table tests used in this

report:

Wide-Table Testing with Star Schema Benchmark

Star Schema Benchmark (SSB) has been designed to test key performance metrics for various OLAP

database products. SSB uses a star schema test set[1] that is widely applied in academia and industry.

Because ClickHouse flattens the star schema into a wide flat table and rewrites the SSB data into a flat table

benchmark[2], we will be using the table creation method in ClickHouse to conduct our test on StarRocks,

ClickHouse, and Apache Druid®.

Additionally, further performance testing will be conducted on the aggregation of low-cardinality fields.

Multi-Table Testing with TPC-H

TPC-H is a decision support benchmark developed by the Transaction Processing Performance Council (TPC).

TPC-H can be used to build models based on real production environments to simulate the data warehouse

of a sales system.

4

W H I T E P A P E R

The main performance metrics are the response times of each query. The TPC-H benchmark evaluates a

database system against the following capabilities:

• Examining large volumes of data.

• Execution of queries with a high degree of complexity.

• Providing answers to critical business questions[3].

Because ClickHouse and Apache Druid® are unable to finish the TPC-H test set, the test for multi-table

scenarios considers only StarRocks and Trino.

Benchmark Results
Benchmark testing validates many of the claims made by StarRocks, Apache Druid®, ClickHouse, and Trino.

These solutions are all incredibly fast in high-volume data scenarios. However, even with such high

performance across the board, one solution performed particularly well.

Wide-Table Scenarios: StarRocks Offers 1.7x Performance Over ClickHouse and 2.2x Over
Apache Druid®

Across the thirteen queries performed on the SSB flat tables, StarRocks achieved a response time 1.7x better

than ClickHouse, and 2.2x faster than Apache Druid®.

With bitmap indexing and cache features enabled, StarRocks performed even better. This was especially

true for queries Q2.2, Q2.3, and Q3.3. Overall, StarRocks delivered performance that was 2.2x that of

ClickHouse and 2.9x that of Apache Druid® for this test.

Figure 1: Wide-Table Performance

5

W H I T E P A P E R

Query StarRocks-
2.1(ms)

StarRocks-
2.1-

index(ms)
ClickHouse-

21.9(ms)

StarRocks
Improvement

Over
ClickHouse

Druid-
0.20.1(ms)

StarRocks
Improvement

Over Druid

Q1.1 47 40 65 1.38 650 13.83

Q1.2 20 13 69 3.45 260 13.00

Q1.3 37 33 31 0.84 810 21.89

Q2.1 190 127 273 1.44 290 1.53

Q2.2 140 53 307 2.19 340 2.43

Q2.3 70 37 224 3.20 130 1.86

Q3.1 330 370 481 1.46 370 1.12

Q3.2 147 113 361 2.46 190 1.29

Q3.3 103 30 367 3.56 120 1.17

Q3.4 30 20 29 0.97 60 2.00

Q4.1 570 453 475 0.83 510 0.89

Q4.2 100 73 256 2.56 190 1.90

Q4.3 53 40 180 3.40 210 3.96

SUM 1837 1402 3118 1.70 4130 2.25

Table 2: Wide-Table Query Results

Low-Cardinality Scenarios: StarRocks is 2.3x Faster Than ClickHouse and 3.2x Faster Than
Apache Druid®

Because business use cases can vary, and because no single test can accurately reflect all common

business use cases, several additional tests were run on scenarios where low-cardinality aggregation is

frequently used (such as aggregation based on geographic location, age group, and product category).

Yet even under these circumstances, StarRocks performed exceptionally. Results showed a 2.3x query

performance advantage for StarRocks over ClickHouse and a 3.2x advantage over Apache Druid®.

6

W H I T E P A P E R

Figure 2: Low-Cardinality Performance

[TABLES AND CHARTS CONTINUE ON NEXT PAGE]

7

W H I T E P A P E R

Query SQL Query type

Q1
select count(*),lo_shipmode from lineorder_flat group by

lo_shipmode;
group by 1 low-cardinality column (< 50)

Q2 select count(distinct lo_shipmode) from lineorder_flat; count distinct 1 low-cardinality column (< 50)

Q3
select count(*),lo_shipmode,lo_orderpriority from

lineorder_flat group by lo_shipmode,lo_orderpriority;
group by 2 low-cardinality columns

Q4
select count(*),lo_shipmode,lo_orderpriority from

lineorder_flat group by
lo_shipmode,lo_orderpriority,lo_shippriority;

group by 2 low-cardinality columns and 1 int column

Q5
select count(*),lo_shipmode,s_city from lineorder_flat

group by lo_shipmode,s_city;
group by 2 low-cardinality columns (7*250)

Q6 select count(*) from lineorder_flat group by c_city,s_city; group by 2 low-cardinality columns (250*250)

Q7
select count(*) from lineorder_flat group by

lo_shipmode,lo_orderdate;
group by 1 low-cardinality column (< 50) and 1 date

column

Q8
select count(*) from lineorder_flat group by

lo_orderdate,s_nation,s_region;
group by 2 low-cardinality columns (< 50) and 1 date

column

Q9
select count(*) from lineorder_flat group by

c_city,s_city,c_nation,s_nation;
group by 4 low-cardinality columns

Q10

select count(*) from (select count(*) from lineorder_flat
group by

lo_shipmode,lo_orderpriority,p_category,s_nation,c_natio
n) t;

group by 5 low-cardinality columns (< 50)

Q11

select count(*) from (select count(*) from
lineorder_flat_distributed group by

lo_shipmode,lo_orderpriority,p_category,s_nation,c_natio
n,p_mfgr) t;

group by 6 low-cardinality columns (< 50)

Q12

select count(*) from (select count(*) from lineorder_flat
group by

substr(lo_shipmode,2),lower(lo_orderpriority),p_category,
s_nation,c_nation,s_region,p_mfgr) t;

group by 7 low-cardinality columns with function
computation (<50)

Table 2: Low-Cardinality Query Details

8

W H I T E P A P E R

Query Result set
cardinality

StarRocks
(ms)

ClickHouse
(ms)

StarRocks
Improvement

Over
ClickHouse

Druid
(ms)

StarRocks
Improvement

Over Druid

Q1 7 380 198 0.5 341 0.9

Q2 1 280 1055 3.8 304 1.1

Q3 35 470 1275 2.7 1072 2.3

Q4 35 550 1431 2.6 1391 2.5

Q5 1750 430 1273 3.0 1513 3.5

Q6 62500 790 4236 5.4 3146 4.0

Q7 16842 650 804 1.2 1825 2.8

Q8 60150 550 1357 2.5 2255 4.1

Q9 62500 1160 5683 4.9 4502 3.9

Q10 546875 4430 7635 1.7 11956 2.7

Q11 546875 4250 8540 2.0 12817 3.0

Q12 468750 4620 8538 1.8 18582 4.0

SUM 18560 42025 2.3 59704 3.2

Table 3: Low-Cardinality Query Results

Multi-table Scenarios: StarRocks Delivers 3.3x Better Query Performance Than Trino

Lastly, we performed a test on twenty-two queries against a TPC-H 100 GB dataset for both StarRocks and

Trino. For these queries, StarRocks’ native storage and its external tables for Apache Hive™ were used.

StarRocks’ Hive external tables and Trino were also used to query the same copy of data that was stored and

compressed in the ORC and ZLIB formats respectively.

The results of this test show that StarRocks’ overall query response time with native storage was 14.6x faster

than that of Trino and 3.3x faster with StarRocks using external tables for Apache Hive.

9

W H I T E P A P E R

Figure 3: Multi-Table Performance

[TABLES AND CHARTS CONTINUE ON NEXT PAGE]

10

W H I T E P A P E R

Query StarRocks-
native (ms)

StarRocks-Hive
external (ms) Trino (ms) StarRocks-native

Over Trino
StarRocks-Hive

Over Trino

Q1 1291 5349 14350 11.1 2.7

Q2 257 940 4075 15.9 4.3

Q3 690 2585 7615 11.0 2.9

Q4 529 2514 9385 17.7 3.7

Q5 1142 5844 15350 13.4 2.6

Q6 115 2936 4045 35.2 1.4

Q7 1435 5128 8760 6.1 1.7

Q8 855 5989 9535 11.2 1.6

Q9 3028 5507 27310 9.0 5.0

Q10 1381 3654 6560 4.8 1.8

Q11 265 691 2090 7.9 3.0

Q12 387 3827 7635 19.7 2.0

Q13 2165 3733 14530 6.7 3.9

Q14 184 3824 4355 23.7 1.1

Q15 354 7321 8975 25.4 1.2

Q16 240 1029 2265 9.4 2.2

Q17 753 5011 46405 61.6 9.3

Q18 2909 7032 30975 10.6 4.4

Q19 702 3905 7315 10.4 1.9

Q20 963 4623 12500 13.0 2.7

Q21 870 10016 58340 67.1 5.8

Q22 545 991 5605 10.3 5.7

SUM 21060 92449 307975 14.6 3.3

Table 3: Multi-Table Query Results

11

W H I T E P A P E R

Software

• Kernel version: Linux 3.10.0-1127.13.1.el x86_64

• OS version: CentOS 7.8.2003

• Software version: StarRocks-2.1, Apache

Druid® 0.20.1, ClickHouse 21.9, Trino-357,

Apache Hive-3.1.2

Hardware

• Host: 3 cloud hosts with the same

configuration

• CPU: 16 cores

• Memory: 64 GB

• Network bandwidth: 5 Gbit/s

• Disk: ESSD

Test configurations:

StarRocks comes away as a clear performance winner in both our wide-table and multi-table testing, but this
begs the question: what is driving the performance differences here in StarRocks’ favor?

Let’s take a deeper look at StarRocks and the capabilities that contributed to our benchmark results.

StarRocks Performance Advantages
Designed for speed and easy management, StarRocks incorporates a vectorized execution engine as well as

an innovative Cost-Based Optimizer (CBO). Together, these features form the foundation for how StarRocks

enables real-time data analytics and efficient queries on real-time mutable data.

StarRocks is also exceptionally flexible and can be used to build various models including wide tables, star

schemas, and snowflake schemas. StarRocks further accelerates queries by allowing access to data that is

stored in Hive, MySQL, and ElasticSearch through the use of external tables. Let’s take a deeper look at each

of these key features to understand exactly how they contribute to StarRocks’ performance.

Vectorized Execution Engine

Compared to other solutions, StarRocks’ vectorized execution engine makes more efficient use of CPUs

thanks to how the engine stores and organizes data in memory and then computes SQL operators in a

columnar manner. Columnar organization and computing make full use of the CPU cache and reduce the

number of virtual function calls and branch predictions. All of this results in more efficient CPU instruction

flows.

StarRocks’ vectorized execution engine also makes full use of SIMD instructions and can complete more data

operations with fewer instructions. Tests against standard datasets show that this engine enhances the overall

12

W H I T E P A P E R

performance of operators by 3 to 10 times.

In addition to vectorization, StarRocks has implemented other optimizations for the query engine. For

example, StarRocks uses Operation on Encoded Data technology to directly execute operators on encoded

strings without the need for decoding. This noticeably reduces SQL complexity and increases the query

speed by more than double.

The engine can also be used for querying data from data lakes directly. StarRocks can directly query data

stored in data lakes such as Hive, Iceberg, and Hudi. These data lakes are usually built on object storage

(e.g. S3) or HDFS, and as can be seen in the benchmark results against Trino above, users can get an

exceptional query experience without loading data into a data warehouse.

Cost-Based Optimizer

The performance of multi-table join queries is notoriously difficult to optimize. Execution engines alone cannot

deliver ideal performance because the complexity of execution plans grow exponentially with the number of

tables involved in the queries.

To address the above, a query optimizer that's intelligent enough to quickly identify the best query plan

possible is required.

Figure 4: Cost-Based Optimizer Overview

In response to this, StarRocks has designed an innovative Cost-Based Optimizer (CBO). This CBO is Cascades-

like and is deeply customized for StarRocks’ vectorized execution engine with several optimizations and

features. These optimizations include reusing common table expressions (CTEs), rewriting subqueries, Lateral

Join, Join Reorder, strategy selection for distributed join execution, and streamlining for low cardinality. In

total, the CBO supports all 99 TPC-DS SQL statements.

13

W H I T E P A P E R

Moreover, StarRocks is continuously optimizing the HashJoin operator to leverage this brand-new CBO. The

result is better multi-table join performance than other solutions, especially for complex multi-table join

queries.

Materialized Views

StarRocks also enables users to build intelligent materialized views across multiple tables. This helps users

precompute metrics in advance which accelerates query performance and allows for higher concurrency.

StarRocks’ materialized views can also be automatically updated with changes made to the base tables,

and when StarRocks conducts query planning, it will rewrite queries to fetch results from the appropriate

materialized views.

These materialized views for multi-tables can greatly reduce the complexity of users’ data pipelines and limit

the number of ETL jobs. With StarRocks, users can leverage materialized views to build the result datasets they

need. This is especially useful in cases where a simplified data pipeline is critical (like with real-time data

analytics).

Additional Features for Query Acceleration

The features listed above contributed the lion’s share of performance enhancements that drove StarRocks’

results against ClickHouse, Apache Druid®, and Trino, but there are a few additional capabilities worth

mentioning that StarRocks’ performance benefits from:

Bitmap Index: StarRocks not only uses sorting to create primary indexes along with MinMax and Zone Maps

for fast filtering, but it also supports bitmap-based secondary indexing. This offers great filtering capabilities for

equal, non-equal, and range queries on the value column(s).

Figure 5: Bitmap Example

14

W H I T E P A P E R

Global Dictionary: StarRocks constructs a global dictionary for low-cardinality fields to convert string fields

into integer fields which greatly improves the performance of count distinct and group by operations. To

construct the global dictionary, users don't need to reload data or specify the dictionary while creating

tables. StarRocks automatically builds global dictionaries for low-cardinality fields once the previous query is

completed with query acceleration being transparent to users.

Lastly, StarRocks has a global runtime filter which effectively decreases the amount of data transferred

between nodes during JOIN operations.

Summary
While it’s clear solutions like Apache Druid®, ClickHouse, and Trino have their place serving the intense

analytics needs of today’s enterprises, for businesses seeking the best analytics performance on high data

volumes, StarRocks stands out from the pack for both its speed and low maintenance costs.

The demand for real-time analytics shows no signs of slowing down, and as analytics becomes more

democratized throughout the enterprise, this will place a tremendous burden on data engineering teams to

figure out how to scale and accelerate their organization’s analytics platform. For those organizations,

solutions like StarRocks will make this stage of digital transformation a breeze.

References:

[1] Pat O'Neil, Betty O'Neil, Xuedong Chen: Star Schema Benchmark - https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

[2] Star Schema Benchmark in ClickHouse documentation - https://clickhouse.com/docs/en/getting-started/example-datasets/star-schema/

[3] TPC Benchmark H Standard Specification Revision 3.0.0 - http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf

15

W H I T E P A P E R

About CelerData
CelerData enables enterprises to quickly and easily grow their business with a real-time analytical engine that

is 3X the performance/cost of any other solutions on the market. CelerData is the only platform uniquely

designed for the next generation real-time Enterprise, unleashing the power of business intelligence to help

accelerate Enterprise digital transformation. Used worldwide by market leading brands including Airbnb,

Lenovo and Trip.com, CelerData generates critical new insights for these data-driven companies. To learn

more, please visit, www.celerdata.com

Apache®, Apache Hive™, Apache Druid®, and their logos are either registered trademarks or trademarks of the Apache Software Foundation in the

United States and/or other countries.

